Evaluation of mechanical properties considering hysteresis characteristic of high damping rubber bearing

Author:

Park K H,Fujiwara Y,Mazda T,Kajita Y

Abstract

Abstract Recently, laminated rubber bearings are widely used as seismic isolators for road bridges. Although many studies have been conducted on the dynamic model of High Damping Rubber (HDR) bearings, few models can reflect phenomena such as the dependency of experienced shear strain on initial history. To develop a model that can represent the dependency of the experienced shear strain of HDR and a dynamic loading test was conducted using HDR specimens. The hysteresis characteristics of HDR was measured by applying a horizontal vibration using a hybrid actuator under a constant vertical load. Based on the cyclic shear test, the mechanical properties of HDR were calculated such as absorbed energy, hysteresis loop area, equivalent stiffness, equivalent damping ratio. Dynamic analysis was also performed from the experimental results. The dynamic model applied in program analysis is a bilinear type double-target model. This model can express the nonlinear characteristics related to the initial history of HDR bearings. The parameters required for dynamic analysis were determined from the experimental results. Through this dynamic analysis, the effectiveness of the bilinear type double target model was verified. In this research, a high damping rubber specimen was used.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference20 articles.

1. Performance of a high damping rubber bearing base isolation system for a shear beam structure;Chen;Earthquake Engineering and Structural Dynamics,1994

2. Effect of experienced shear strain dependency of high damping rubber bearing on earthquake response of isolation structure;Ohtori;J. Struct. Constr. Eng. AIJ,1995

3. Loading Rate Effects of High Damping Seismic Isolation Rubber Bearing on Earthquake Responses;Koo;KSME International Journal,1998

4. Modified H-D model: A new smooth-curve hysteresis model of laminated rubber bearings for base isolation;Takenaka;AIJ J. Des.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3