Author:
Korepanov M A,Koroleva M R,Mitrukova E A
Abstract
Abstract
The paper considers the numerical simulation of the flow of argon with account for the condensation process in the micronozzle and behind it. To describe phase transitions, the initial mathematical model of viscous heat-conducting gas flow is supplemented with the equation of formation and growth of condensation nuclei in the flow. The developed mathematical model allows for simulating the process of gas condensation at low pressures and temperatures. It is shown that the condensate mass fraction in the flow is not less than 1% at the pressure and temperature of 5 bar and 200 K, respectively, when argon flows out of a micronozzle to the environment with the pressure of 0.01 Pa. At the nozzle exit, the size of condensed particles reaches 80 angstroms. The obtained results confirm the necessity to take into account the condensation phenomenon in micronozzle flows of inert gases.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献