Relations between cumulants and central moments and their applications

Author:

Poloskov Igor E

Abstract

Abstract At the beginning of this paper, we consider the solution to the problem of constructing relations between mixed central moments and cumulants (semi-invariants) of an arbitrary vector random variable. The sought relations are derived on the basis of formal operations over the Maclaurin series, which are various expansions of the characteristic function of the random vector. In the case under consideration, the coefficients of the expansions are mixed moments, cumulants, and central moments. One of the applications for the recurrence relations obtained is their usage to closure systems of ordinary differential equations (ODE) for the functions of the mathematical expectations and the functions of central moments until a given order. These functions are the main probabilistic speci cations for the state vectors of systems of stochastic ordinary differential equations (SODE) describing a behavior of stochastic dynamic systems. Therefore we have devoted the last part of the paper to derivation of the ODE system satisfied by the indicated moment functions.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3