Implementation Learning Vector Quantization Using Neural Network for Classification of Ear, Nose and Throat Disease

Author:

Samsir Samsir,Daulay Nelly Khairani,Harahap Syaiful Zuhri,Zalmi Wahyuni Fithratul,Sari Afni Nia,Nasution Fitri Aini,Watrianthos Ronal

Abstract

Abstract This study aims to use data from 57 patients at Rantauprapat Hospital to train a Neural Network using a quantization learning vector method for the categorization of ear, nose, and throat disorders. The input factors were fever, tiredness, nausea, breathing pain, sore throat, hearing loss, allergies, chills and sweating, and thick and transparent mucus. The factors studied were ear canal infections, pharyngitis of the neck, throat, nose, and sinusitis. The findings revealed that ten neurons with an objective value of 0.01 in the learning rate range of 0.01 - 0.05 resulted in categorizing snoring, nose, and ear disorders, including the input layer. The MATLAB program is utilized in this approach, with an average accuracy of 67 per cent and a mean square error of 0.2.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference13 articles.

1. Comparative Analysis of Backpropagation With Learning Vector Quantization (LVQ) to Predict Rainfall in Medan City;Mahrina;J. Phys. Conf. Ser.,2019

2. Predicting the loan risk towards new customer applying data mining using nearest neighbor algorithm;Samsir;IOP Conf. Ser. Mater. Sci. Eng,2020

3. Comparison of machine learning algorithms for chest X-ray image COVID-19 classification;Samsir;J. Phys. Conf. Ser.,2021

4. Penerapan metode Learning Vector Quantization (LVQ) pada prediksi jurusan di SMA PGRI 1 Banjarbaru;Meliawati;Klik Kumpul. J. Ilmu Komput.,2020

5. Penerapan Learning Vector Quantization Penentuan Bidang Konsentrasi Tugas Akhir (Studi Kasus : Mahasiswa Teknik Informatika UIN Suska Riau);Budianita,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3