Convolutional Neural Network and Deep Learning Approach for Image Detection and Identification

Author:

Cynthia Eka Pandu,Ismanto Edi,Arifandy M. Imam,Sarbaini S,Nazaruddin N,Manuhutu Melda Agnes,Akbar Muhammad Ali,Abdiyanto

Abstract

Abstract There are many different varieties of clouds, each with a unique set of properties. As a result of this variability, it is difficult to discern these sorts of clouds. A database’s objects must be categorized using data categorization in order to be organized into multiple categories. This study made use of the Cirrus Cumulus Stratus Nimbus (CCSN) dataset, which falls under the low cloud category and includes photos of Cumulus (182 images), and Cumulonimbus (242 photographs), and Stratus (242 images) (202 images). A fast R-CNN detector with feature extraction = Resnet50 was used to create a system for classifying cloud kinds. A significant amount of training time is saved by the quicker R-CNN due to its lack of a selective search algorithm. Training loss values for cloud images had an average of 0.9030 from the first epoch through the last one. Using the Faster R-CNN object detection method with the Resnet50 architecture, cloud photos were added and the accuracy was 94.12 and the average precision was 0.76. - Faster R-advantages CNN affect the architecture utilized and are marginally influenced by the algorithm choice, however CNN with Resnet50 is superior overall where these advantages are held.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference18 articles.

1. Deteksi Ujung Jari menggunakan Faster-RCNN dengan Arsitektur Inception v2 pada Citra Derau;Alamsyah;JuSiTik J. Sist. dan Teknol. Inf. Komun.,2019

2. Applying Faster R-CNN for Object Detection on Malaria Images;Hung;HHS Public Access,2017

3. Analisis Metode Electre Pada Pemilihan Usaha Kecil Home Industry Yang Tepat Bagi Mahasiswa;Dewi;Sistemasi,2019

4. The Analysis of the ELECTREE II Algorithm in Determining the Doubts of the Community Doing Business Online;Alkhairi;J. Phys. Conf. Ser.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3