Using relaxed concurrent data structures for contention minimization in multithreaded MPI programs

Author:

Tabakov Andrey V,Paznikov Alexey A

Abstract

Abstract Parallel computing is one of the top priorities in computer science. The main means of parallel processing information is a distributed computing system (CS) - a composition of elementary machines that interact through a communication medium. Modern distributed VSs implement thread-level parallelism (TLP) within a single computing node (multi-core CS with shared memory), as well as process-level parallelism (PLP) process-level parallelism for the entire distributed CS. The main tool for developing parallel programs for such systems is the MPI standard. The need to create scalable parallel programs that effectively use compute nodes with shared memory has determined the development of the MPI standard, which today supports the creation of hybrid multi-threaded MPI programs. A hybrid multi-threaded MPI program is the combination of the computational capabilities of processes and threads. The standard defines four types of multithreading: Single - one thread of execution; Funneled - a multi-threaded program, but only main thread can perform MPI operations; Serialized - only one thread at the exact same time can make a call to MPI functions; Multiple - each program flow can perform MPI functions at any time. The main task of the multiple mode is the need to synchronize the communication flows within each process. This paper presents an overview of the work that addresses the problem of synchronizing processes running on remote machines and synchronizing internal program threads. Method for synchronization of threads based on queues with weakened semantics of operations is proposed.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. Thread-safety in an MPI implementation: Requirements and analysis;Gropp;Parallel Computing,2007

2. Fine-grained multithreading support for hybrid threaded MPI programming;Balaji;The International Journal of High Performance Computing Applications,2010

3. MPI+ threads: Runtime contention and remedies;Amer;ACM SIGPLAN Notices,2015

4. Locking aspects in multithreaded MPI implementations;Amer,2016

5. Towards millions of communicating threads;Dang,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3