The use of deep neural networks to detect alarms in mines

Author:

Kudinov D S,Kokhonkova E A

Abstract

Abstract The article discusses the problem of detecting signals against a background of noise for alarms for miners in underground mine workings in case of emergency. The theoretical aspects of linear and non-linear filtering of alarms are given, the solution to the problem of constructing a non-linear filter based on deep neural network (DNN) is described. The simulation results are presented and a comparative analysis of the performance of an individual miner receiver using the methods of linear coherent reception and a DNN filter is made. Neural network training was carried out on model and experimental data obtained at an existing underground mine.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. Long Short-Term Memory;Hochreiter;Neural Comput.,1997

2. Deep Recurrent Neural Networks for Acoustic Modelling;Chan,2015

3. Deep Learning Techniques for Music Generation - A Survey;Briot,2017

4. Demodulation of faded wireless signals using deep convolutional neural networks;Mohammad,2018

5. Universal Neural Network Demodulator for Software Defined Radio;Amini;IACSIT International Journal of Engineering and Technology,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3