Long-term rolling prediction of transformer power load capacity based on the informer model

Author:

Yang Chuan,Shu Zhibing

Abstract

Abstract There are currently no methods capable of long-term forecasting based on very long-term real-world data. Any false prediction may damage the electrical transformer. For this problem, a transformer power load based on the Informer model is used as a method of long-term rolling forecasting. This method uses the self-attention distillation mechanism in the Informer model to allow the decoder of each layer to shorten the length of the input sequence by half, thus greatly saving the encoder memory overhead, and this paper adds a rolling long-term prediction function, making the prediction decoding time extremely short. Taking the power load data of a certain province in China as a test case, the improved model Informer* was compared with the traditional Informer model. The results show that the prediction accuracy of the Informer* model is higher and the load prediction accuracy is effectively improved.

Publisher

IOP Publishing

Reference8 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3