A Comparative Study on Part-of-Speech Taggers’ Performance on Examination Questions Classification According to Bloom’s Taxonomy

Author:

Goh Thing Thing,Jamaludin Nor Azliana Akmal,Mohamed Hassan,Ismail Mohd Nazri,Chua Huang Shen

Abstract

Abstract Examination questions classification according to Bloom’s Taxonomy uses Natural Language Processing (NLP) approach, a series of text processing approach that generally can divided into the keywords identification stage and then the identified keywords classification to Bloom’s Taxonomy levels stage. Since this NLP approach is a pipeline processes, the keywords identification stage’s performance in term of accuracy is affecting the subsequent stage - the identified keywords classification and subsequently limits the final accuracy performance of the questions classification. The keywords identification stage’s performance is mainly depending on the effectiveness of Part-Of-Speech (POS) tagging. Thus, this paper aims to identify the best performing POS tagger in keywords identification stage and enhance the tagger’s performance with rule-based approach to achieve high accuracy performance and benefit the subsequent keyword classification and then the questions classification accuracy. The Perceptron tagger and the Stanford POS tagger are selected to be evaluated their performance in identifying the keywords of the randomly selected 200 examination questions from STEM subjects. This paper has observed the Stanford POS tagger is the best performing tagger in POS tagging with accuracy of 80.5%. Some rules are applied to the POS tagging to improve the accuracy further to 91.5%.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

1. A Combination Method of Syntactic and Semantic Approaches for Classifying Examination Questions into Bloom’s Taxonomy Cognitive;Mohamed;J. of Engineering Science and Technology,2019

2. Solving the problem of cascading errors: approximate Bayesian inference for linguistic annotation pipelines;Finkel,2006

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3