Modality-Invariant and -Specific Representations with Crossmodal Transformer for Multimodal Sentiment Analysis

Author:

Shan Qishang,Wei Xiangsen,Cai Ziyun

Abstract

AbstractHuman emotion judgments usually receive information from multiple modalities such as language, audio, as well as facial expressions and gestures. Because different modalities are represented differently, multimodal data exhibit redundancy and complementarity, so a reasonable multimodal fusion approach is essential to improve the accuracy of sentiment analysis. Inspired by the Crossmodal Transformer for multimodal data fusion in the MulT (Multimodal Transformer) model, this paper adds the Crossmodal transformer for modal enhancement of different modal data in the fusion part of the MISA (Modality-Invariant and -Specific Representations for Multimodal Sentiment Analysis) model, and proposes three MISA-CT models. Tested on two publicly available multimodal sentiment analysis datasets MOSI and MOSEI, the experimental results of the models outperformed the original MISA model.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference27 articles.

1. Multimodal machine learning: A survey and taxonomy;Baltrušaitis;IEEE transactions on pattern analysis and machine intelligence,2018

2. Consensus of fractional-order heterogeneous multi-agent systems;Yin;Iet Control Theory & Applications,2013

3. Adaptive periodic event-triggered consensus for multi-agent systems subject to input saturation;Yin;International Journal of Control,2016

4. H-infinity stabilization for singular networked cascade control systems with state delay and disturbance;Du;IEEE Transactions on Industrial Informatics,2013

5. Further studies on control synthesis of discrete-time T-S fuzzy systems via useful matrix equalities;Xie;IEEE Transactions on Fuzzy Systems,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3