DeepFake Video Detection through Facial Sparse Optical Flow based Light CNN

Author:

Fang Shuya,Wang Shucheng,Ye Rongjun

Abstract

Abstract DeepFake detection has become an attractive research topic with tremendous growth of interests recently. However, existing DeepFake detection studies spare no effort to improve accuracy or Area Under Curve metric, regardless of computing costs. In this work, the tradeoff between result accuracy and computing resources is taken into consideration. A facial sparse optical flow method is proposed to extract spatio-temporal features representing facial expression incoherence, which helps to distinguish fake videos and real videos. The features fed into a light CNN model are highly compact and low-dimensional. The proposed method has an amazing small amount of parameters with high training speed and low usage of GPU memory. The low resource requirement makes it possible to port to embedded development platform.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference12 articles.

1. High-Resolution Representations for Labeling Pixels and Regions;Sun,2019

2. Multi-attentional Deepfake detection;Zhao,2021

3. Interpretable and Trustworthy Deepfake Detection via Dynamic Prototypes;Trinh,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhance Deepfake Video Detection Through Optical Flow Algorithms-Based CNN;Communications in Computer and Information Science;2024

2. Deepfake Generation and Detection - An Exploratory Study;2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON);2023-12-01

3. A systematic literature review on the effectiveness of deepfake detection techniques;Journal of Cyber Security Technology;2023-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3