Artificial neural network model for banckrupty prediction

Author:

Prasetiyo B,Alamsyah ,Muslim M A,Subhan ,Baroroh N

Abstract

Abstract Bankruptcy is a financial failure in a business where the company fails to generate profits and cannot pay its debts. The impact of bankruptcy is very large for the organization and can be felt by the whole community. Thus, the prediction of a company’s financial failure is absolutely necessary to prevent bankruptcy. Prediction can be done with data mining, one of the methods is to use a network model. This study was to obtain the results of the classification of types of companies that went bankrupt and get the performance of the algorithm used. The results obtained are with an accuracy of class recal 99.30% (trueNB) dan 99.07% (trueB). Sedangkan class precision 99.30% (predNB) dan 99.07% (pred.B). Hasil evaluasi kinerja algoritma Naïve Bayesian Classifier pada penelitian ini menunjukkan tingkat akurasi yang cukup tinggi yaitu 99.20%.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effective Automatic Feature Engineering on Financial Statements for Bankruptcy Prediction;2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME);2023-07-19

2. Artificial neural network using particle swarm optimization and genetic algorithm on the air temperature forecast;INTERNATIONAL CONFERENCE ON APPLIED COMPUTATIONAL INTELLIGENCE AND ANALYTICS (ACIA-2022);2023

3. Differential augmentation data for vehicle classification using convolutional neural network;INTERNATIONAL CONFERENCE ON APPLIED COMPUTATIONAL INTELLIGENCE AND ANALYTICS (ACIA-2022);2023

4. Optimization of C4.5 algorithm using information gain and bagging ensemble for diagnose of breast cancer;INTERNATIONAL CONFERENCE ON APPLIED COMPUTATIONAL INTELLIGENCE AND ANALYTICS (ACIA-2022);2023

5. The improvement of COVID-19 prediction accuracy using optimal parameters in reccurent neural network model;INTERNATIONAL CONFERENCE ON APPLIED COMPUTATIONAL INTELLIGENCE AND ANALYTICS (ACIA-2022);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3