Multi-objective Optimal Motion Planning of Heavy-duty Assembly Robot for Large Spacecraft Entering Cabin

Author:

Zhang Chengli,Meng Shaohua,Liu Tonghui,Li Haiyue,Zhao Jinlong,Wang Pengfei,Xing Shuai,Hu Ruiqin

Abstract

Abstract The space inside the space capsule such as the space station sky and the core module is narrow, the size of the depth is large, and the bearing points are scattered and weak, there are some difficulties in loading, large size, different shape, complicated interface, scattered position, difficult position and pose adjustment, high assembly risk, etc.. To solve these problems, a six-DOF heavy-duty assembly robot is proposed in this paper. The robot adopts the combination of linear drive and rotating joint to increase the working space and bearing capacity of the robot. The kinematics and dynamics analysis model of the robot is established, and the path planning is carried out by means of quintic non-uniform B-spline interpolation method, considering fully the space constraints of the assembled equipment, a multi-objective trajectory optimization model based on NSGA2 algorithm is established to obtain the Pareto optimal solution set with time, impact and energy consumption as optimization objectives, prove that the equipment can be efficient and smooth. Reliable installation, with less impact and less power consumption under multi-objective optimization analysis.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference11 articles.

1. Research on automatic drilling and riveting technology of launch vehicle siding robot[J];Lili;Mechanical Engineering and Automation,2020

2. A robot-based autonomous assembly method for large parts of spacecraft[J];Shaohua;Robotics,2018

3. Design and research of space vehicle pipeline assembly robot structure and control[D];Haiou,2015

4. The Numerical simulation study on the motion law of floating pellets in sealed chamber[J];Zhao;Spacecraft Environmental Engineering,2018

5. Application of Robots in Satellite Cabin Plate Assembly;Tiecheng;Spacecraft Environmental Engineering,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3