Neural network approach to recognition of visible constellations by sky photo image

Author:

Galkin V.A.,Makarenko A.V.

Abstract

Abstract The current paper demonstrates the effective capabilities of deep neural networks in solving the problem of identification of constellations from a photo of the sky in conditions of a priori uncertainty, incomplete observability and stochastic disturbances. The quality of solution 0,927 by metric F1 is obtained. In order to achieve the result, the original ResNet-like architecture of the convolution neural network was synthesized; statistical analysis of the dataset was carried out, the function of losses and strategy of neural network training were developed, and an accurate criterion of constellation observability in the image was formed. The observation of noise influence on the quality and stability of solutions was carried out.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference13 articles.

1. Study of the possibility of solving the problem of celestial navigation by deep learning methods. 13 Vserossijskoe soveshhanie po problemam upravlenija VSPU-2019;Galkin,2019

2. Accuracy performance of star trackers—A tutorial;Liebe;IEEE Trans. Aerosp. Electron. Syst.,2002

3. A survey of all-sky autonomous star identification algorithms;Na,2006

4. A survey on star identification algorithms;Spratling;Algorithms.,2009

5. A Survey of Lost-in-Space Star Identification Algorithms since 2009;Rijlaarsdam;Sensors.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3