A caching model for a quick file access system

Author:

Ermakov N. V.,Molodyakov S. A.

Abstract

Abstract The amount of stored and transmitted information is constantly increasing. The search and retrieval of the required data become more difficult as it grows. In this paper, we consider the developed storage system. The system stores information about pharmaceutical research. This system effectively stores data depending on its features. The main attention is paid to the issue of data caching at the application server level. To speed up data retrieval, we suggest using a two-section cache. The first section contains the results of queries to the database, and the second contains data from the file system. Analytical and simulation caching models have been developed for research. In the model, you can specify the distribution of requests, the size of the cache sections, the number of requests, and other parameters. The model uses the LRU cache replacement policy. The graphs of model research depending on the cache size and other parameters are provided. The analytical model considers the ideal case, so it shows better results compared to the simulation model.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference13 articles.

1. The Big Data approach to collecting and analyzing traffic data in large scale networks;Laboshin;Procedia Computer Science,2017

2. Big Data processing system for analysis of GitHub events;Voinov,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Methodology for the development of a distributed information system;VII INTERNATIONAL CONFERENCE “SAFETY PROBLEMS OF CIVIL ENGINEERING CRITICAL INFRASTRUCTURES” (SPCECI2021);2023

2. Process Mining for User Interactions with Russian Wikipedia;Lecture Notes in Networks and Systems;2022

3. Разработка системы хранения с использованием методов быстрого доступа к данным;Естественные и Технические Науки;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3