Heat leak variation with the surface temperature of a cryogenic pipe of the superconducting power transmission

Author:

Watanabe Hirofumi,Iizuka Shiori,Kato Takaya,Kanda Masae,Yamaguchi Satarou

Abstract

Abstract The measurements of the heat leak variation with the surface temperature of a cryogenic pipe of the superconducting power transmission were performed in the range of 23.7 °C–36.4 °C. The cryogenic pipe which was an object of the present study was that used in the project of the superconducting DC power transmission conducted in Ishikari, Japan (Ishikari project). This cryogenic pipe has two inner pipes in one outer pipe, with a radiation shield used to conceal the inner pipe installing the cable from the outer pipe, which is at room temperature, to reduce heat leakage. A test pipe with the length of 12 m was used for the measurements. The liquid nitrogen was filled in the test pipe and the evaporated nitrogen gas rate was measured to obtain the heat leak. The heat leak to the inner pipe installing the cable was almost constant at around 0.04 W/m, whereas the heat leak to the other inner pipe used to return liquid nitrogen for circulation was around 1.3 W/m at surface temperatures ranging from 23.7 °C to 36.4 °C. The latter, with previous measurements, was well fitted by a function considering radiative heat transfer and conductive heat transfer. Portions of the radiative heat transfer and the conductive heat transfer were separated with this function. This information can be used to improve the cryogenic pipe in the future.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3