Wave Model for the Design of Sustainable Coastal Infrastructures at an Industrial Site in Tuban, East Java

Author:

Hendriyono W,Wibowo M,Subarkah A,Aziz H

Abstract

Abstract This study focuses on the use of computational model in the design of a breakwater structure, which aims to determine the propagation pattern of the long-term ocean waves, in order to understand their propagation from the deep waters, and to determine the distribution of their energy around a proposed breakwater construction site. The method used is computational simulation of the wave model using the 2D Boussinesq Wave (BW) Module of MIKE21 software. The simulation used an incoming wave of 4.6 m high, which corresponds to the 100 years return-period value. The results show that the existing breakwater layout can protect the harbour by reducing the incoming waveheight by up to 75%. At the proposed design condition, the propagation pattern of the incoming wave slightly differs from the existing condition. The presence of the slopes on both sides of the channel changes the wave direction outwards due to shoaling effects, and consequently, larger concentration of wave energy occurs at some parts of the proposed breakwater design. Results from the model are useful for the design of the new breakwater structures, which is designed according to the predicted wave energy distribution.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference14 articles.

1. Wave Reflection and Wave Run-up at Rubble Mound Breakwaters;Muttray;Coastal Engineering,2006

2. Wave Generation in a Computation Domain;Liu;Applied Mathematical Modelling,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3