Plastic behaviour and deformation mechanisms in silicon nano-objects

Author:

Texier M,Merabet A,Tromas C,Brochard S,Pizzagalli L,Thilly L,Rabier J,Talneau A,Le Vaillant Y-M,Thomas O,Godet J

Abstract

Abstract Physical properties of nano-objects differ from what they are in bulk materials when the size decreases down to the nanometre scale. This behavioural change, named size effect, also applies to mechanical properties and has been evidenced in various materials. For instance, at low temperature, bulk silicon is known to be a brittle material while silicon nano-objects exhibit a ductile behavior. Although mechanical properties of silicon have been intensively studied over the last decades, the origin of this remarkable brittle-to-ductile transition at small scales remains, however, undetermined. In this article, a study of the plastic behaviour of nano-pillars is reported. The main results obtained from the combination of numerical calculations and experimental compression tests followed by atomically-resolved transmission electron microscopy imaging are described. We discuss the possibility for perfect dislocations to dissociate at low temperature and the underrated role of shuffle partial dislocations in plastic deformation of silicon. The formation of unexpected extended defects in the {115} planes with increasing plastic strain, also appears as a key-factor leading to the transition between ductile and brittle regimes at small scales.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3