Fast and compact VCSEL-based quantum random number generator

Author:

Shakhovoy R,Maksimova E,Sharoglazova V,Puplauskis M,Kurochkin Y

Abstract

Abstract Random number generators (RNGs) are an essential ingredient of modern cryptographic systems. Particular attention is paid today to a special class of RNGs – quantum RNGs, which are attracting close attention of researchers due to the explosive development of quantum key distribution systems, where the use of quantum randomness is a necessary security requirement. A large number of various quantum entropy sources have been proposed over the last 10-15 years. Most of them are based on the use of different quantum optics phenomena, particularly, on the effects occurring in semiconductor lasers. This choice is due to the relatively low cost and ease of use of such devices and the high random bit generation rate available with optical QRNGs. Motivated by these reasons, we study in the present research the QRNG based on variations of light polarization in a vertical-cavity surface-emitting laser (VCSEL). The scheme we propose allows creating an extremely compact and fast optical QRNG, consisting essentially of only a laser and a polarizing beam splitter. We revealed that it is possible to ensure the pulsed operation of a VCSEL in a bistable regime, which is characterized by random switch of light polarization. We show, however, that probabilistic properties of such laser pulses significantly depend on the internal laser parameters as well as on its operating mode. Understanding these properties is fundamentally important for the correct assessment of the quantum noise contribution and, consequently, for the subsequent post-processing of digitized random sequences.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference7 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3