Optical and Thermal Analysis of Secondary Optics in Light Emitting Diodes’ Packaging: Analysis of MR16 Lamp

Author:

Azarifar Mohammad,Cengiz Ceren,Arik Mehmet

Abstract

Abstract Optical and thermal control are two main factors in package design process of lighting products, specifically light emitting diodes (LEDs). This research is aimed to study the role of secondary optics in opto-thermal characterization of LED packages. Novel thin total internal reflection (TIR) multifaceted reflector (MR) lens is modelled and optimized in Monte-Carlo ray-tracing simulations for MR16 package, regarded as one of the widely used LED lighting products. With criteria of designing an optical lens with 50% reduced thickness in comparison to commercially available lenses utilized in MR16 packages, nearly same light extraction efficiency and more uniform beam angles are achieved. Optical performance of the new lens is compared with the experimental results of the MR16 lamp with conventional lens. Only 2.3% reduction in maximum light intensity is obtained while lens size reduction was more than 25%. Based on the detailed CAD design, heat transfer simulations are performed comparing the lens thickness effect on heat dissipation of MR16 lamp. It was observed that using thinner lenses can reduce the lens and chip temperature, which can result in improved light quality and lifetime of both lens and light source.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference7 articles.

1. An inexpensive nanosecond light pulser for use in photomultiplier system testing;McFarlane;Review of Scientific Instruments,1974

2. State Lighting in General Illumination Applications,2001

3. 16 Reference Design, Application Note AP71;Cree

4. Thermal management of LEDs: package to system;Arik;Third international conference on solid state lighting,2004

5. Free-form lenses for high illumination quality light-emitting diode MR16 lamps;Chen;Optical Engineering,2009

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3