Numerical assessment of a gas-fired condensing boiler model for residential buildings application

Author:

Simic K,T’Jollyn I,Faes W,Borrajo Bastero J,Laverge J,De Paepe M

Abstract

Abstract According to the official statistical reports, gas-fired boiler units still remain to be one of the main equipment types for meeting the space heating and daily hot water demand of the residential dwellings across the European Union. Due to the prevalence of the natural gas grid and performance stability, gas-fired boilers are considered to remain as one of the standard energy sources. On the other hand, even though gas-fired water heating technology is a well-known concept, existing numerical models found in the literature are often case-specific with poor reusability mostly reflected in fitted efficiencies. Algorithms behind these models usually require the input of large amount of hardly attainable design characteristics of the units. In this paper, a modelling method for acquiring the performance of a heating gas-fired condensing boiler unit will be shown. The model is based on the limited input data available in the official characteristics of the units issued by the relevant manufacturers. The simulations are programmed by using the programming language Modelica and the software tool Dymola. The model is based on the fixed natural gas intake which combusts into a stable mixture of the combustion gases that further heat the circulating water. During the heat transfer process inside the condensing boilers there is a possibility for condensate formation out of the water vapour of the combustion gases which increases the efficiency of the unit. The formation of condensate, however, is depending on the return water temperature of the unit which has to be lower than the dew point temperature of the combustion gasses. The goal of this research is to determine how accurate can performance indicators of gas-fired boilers be attained with the use of a limited amount of available input data together with clearly defined assumptions that follow the modelling methodology.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. Analysis of the EU residential energy consumption: Trends and determinants;Tzeiranaki;Energies,2019

2. Energy consumption in households,2018

3. Analyse van het energieverbruik van huishoudens in België 2010-2016,2017

4. Condensing boilers in buildings and plants refurbishment;Lazzarin;Energy and Buildings,2012

5. A novel modelling approach for condensing boilers based on hybrid dynamical systems;Satyavada;Machines,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3