Author:
Kovacs Andras,Zatelepin Valery,Baranov Dmitry
Abstract
Abstract
While experimental physics progressed tremendously since the 1970s, the neutron model has remained essentially unchanged. Motivated by developments in both experiments and theory, which we briefly review in section 1, we propose that the initial neutron decay step is not the emission of an 80 GeV mass boson particle, but the emission of a much lighter lepton particle. On the basis of well-known neutron data, in section 2 we estimate that this new lepton’s mass is 1.5 MeV.
Historically, investigations of deuteron photo-dissociation led nuclear scientists to assume that no electron-like particle is associated with neutron decay. We therefore re-examine these experiments in section 3. We demonstrate that deuteron photo-dissociation leads to 2p
+ + e
− products at high photon energies. Our calculations show why a deuteron always breaks up into p + n particles at <3 MeV photon energy.
Sections 4 - 7 discuss the properties and interactions of the 1.5 MeV lepton particle. Numerous investigations, including our own experiments, demonstrate the presence of negative elementary charges within atomic nuclei. The emission or absorption of negative nuclear charges involves the emission or absorption of a new lepton particle, which always decays into an electron. Various mass measurement methods converge to the same result: the emitted or absorbed lepton is approximately three times heavier than an ordinary electron. Specifically, we measure its mass to be 1553.5 keV.
Our work demonstrates that, despite being a single particle, the neutron comprises a positive and a negative elementary charge. To make sense of the neutron structure, it is necessary to firstly understand the proton’s and the newly discovered 1.5 MeV lepton’s internal structures. In section 9, we apply our results to better understand the neutron’s properties.
Subject
Computer Science Applications,History,Education
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Proton and Occam’s Razor;Journal of Physics: Conference Series;2023-05-01