Time dispersion in quantum electrodynamics

Author:

Ashmead John

Abstract

Abstract If we use the path integral approach, we can write quantum electrodynamics (QED) in a way that is manifestly relativistic. However the path integrals are confined to paths that are on mass-shell. What happens if we extend QED by computing the path integrals over all paths in energy momentum space, not only those on mass-shell? We use the requirement of covariance to do this in an unambiguous way. This gives a QED where the time/energy components appear in a way that is manifestly parallel to the space/momentum components: we have dispersion in time, entanglement in time, full equivalence of the Heisenberg uncertainty principle (HUP) in time to the HUP in space, and so on. Entanglement in time has the welcome side effect of eliminating the ultraviolet divergences. We recover standard QED in the long time limit. We predict effects at scales of attoseconds. With recent developments in attosecond physics and in quantum computing, these effects should be detectable. Since the predictions are unambiguous and testable the approach is falsifiable. Falsification would sharpen our understanding of the role of time in QED. Confirmation would have significant implications for attosecond physics, quantum computing and communications, and quantum gravity.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3