Numerical and experimental study on metamaterials featuring acoustical and thermal properties

Author:

Levi Elisa,Neri Manuela,Pilotelli Mariagrazia,Alessio Piana Edoardo,Maria Lezzi Adriano

Abstract

Abstract Metamaterials can be defined as materials which, for their peculiar composition or structure, exhibit characteristics that are not normally found in nature. “Multifunctional” metamaterials could be used to optimise different characteristics at the same time. In this paper the authors try to apply them for thermal and acoustic optimization of external building walls. Thermal optimization consists in obtaining a low transmittance, important in winter, and a low periodic thermal transmittance, important in summer. Acoustic optimization consists in obtaining high sound transmission loss, to respect the law prescriptions, and a good sound absorption coefficient, if possible. In this way should be possible enhance the comfort conditions in buildings and reduce the energy demand for winter heating and summer cooling. The proposed solution consists of several layers with different suitable characteristics: the sequence of the layers has been chosen with particular care. The thermal analysis has been performed by means of a self-developed code based on the ISO 13786 standard. The acoustic behaviour of the single layers has been determined following the procedure given by the ASTM E2611-09 standard using a four-microphone impedance tube and the transfer matrix method has been used for the complete assembly. This preliminary combined study showed encouraging results.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference17 articles.

1. On the Cost-Optimal Levels of Energy- Performance Requirements for Buildings: A Case Study with Economic Evaluation in Italy;Tronchin;International Journal of Sustainable Energy Planning and Management,2014

2. Computational Analysis of the Influence of PCMs on Building Performance in Summer;Neri;Advances in Intelligent Systems and Computing,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3