Study on the Effect of Anti-galloping Device with Cubic Stiffness and Particle Damping

Author:

Zhao Bin,Cheng Yongfeng,Wang Jingchao,Liu Bin,Chen Yushu

Abstract

Abstract The galloping of iced conductors is a common disaster of overhead conductors. Most traditional anti-galloping devices lack a nonlinear dynamic vibration absorber; hence, they have a limited anti-galloping effect. In this study, we designed, optimized, and tested an electric power fitting and an anti-galloping device with cubic stiffness and particle damping for ultra-high-voltage (UHV) transmission lines. We built a nonlinear dynamic model of the coupling galloping system comprising split conductors and anti-galloping devices. The harmonic balance method obtained the steady-state analytical solutions and corresponding averaged equations. The test spans in the laboratory were used to design the test program and equipment. We verified the accuracy of the nonlinear dynamic model and the harvesting effect of the anti-galloping device with cubic stiffness and particle damping. The theoretical and experimental results were highly consistent, and in the range of (0, 2] Hz, the anti-galloping device reduced the galloping amplitude. Therefore, cubic stiffness and particle damping can effectively improve the anti-galloping ability of UHV transmission lines, prolonging their service period.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3