Classical Hamiltonian Systems with balanced loss and gain

Author:

Ghosh Pijush K

Abstract

Abstract Classical Hamiltonian systems with balanced loss and gain are considered in this review. A generic Hamiltonian formulation for systems with space-dependent balanced loss and gain is discussed. It is shown that the loss-gain terms may be removed completely through appropriate co-ordinate transformations with its effect manifested in modifying the strength of the velocity-mediated coupling. The effect of the Lorentz interaction in improving the stability of classical solutions as well as allowing a possibility of defining the corresponding quantum problem consistently on the real line, instead of within Stokes wedges, is also discussed. Several exactly solvable models based on translational and rotational symmetry are discussed which include coupled cubic oscillators, Landau Hamiltonian etc. The role of PT -symmetry on the existence of periodic solution in systems with balanced loss and gain is critically analyzed. A few non- PT -symmetric Hamiltonian as well as non-Hamiltonian systems with balanced loss and gain, which include mechanical as well as extended system, are shown to admit periodic solutions. An example of Hamiltonian chaos within the framework of a non- PT -symmetric system of coupled Duffing oscillator with balanced loss-gain and/or positional non-conservative forces is discussed. It is conjectured that a non- PT -symmetric system with balanced loss-gain and without any velocity mediated interaction may admit periodic solution if the linear part of the equations of motion is necessarily PT symmetric —the nonlinear interaction may or may not be PT -symmetric. Further, systems with velocity mediated interaction need not be PT -symmetric at all in order to admit periodic solutions. Results related to nonlinear Schrödinger and Dirac equations with balanced loss and gain are mentioned briefly. A class of solvable models of oligomers with balanced loss and gain is presented for the first time along with the previously known results.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference94 articles.

1. Dissipation-induced instabilities in finite dimensions;Krechetnikov;Rev. Mod. Phys.,2007

2. A paradigm for joined Hamiltonian and dissipative systems;Morrison;Physica,1986

3. On Dissipative Systems and Related Variational Principles;Bateman;Phys. Rev.,1931

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3