Sound classification with time-frequency features in forest environment

Author:

Xu Sizhe,Chen Yang

Abstract

Abstract The study of forest sound classification has drawn more attention recently due to its potential for illegal activities and natural disaster monitoring. Based on the forest sound classification dataset (FSC22), a dataset specific to possible sound existing in the forest, five classification methods are utilized to investigate the relationship between recognition accuracy and the number of sound acoustic features, as well as the number of target classes. The results confirmed that extreme random forest is the best method for forest sound classification, with an accuracy of around 70% when the target class number is above 20. Further, Mel-frequency cepstral coefficients are the critical feature for sound classification, while fuzzy labels in the dataset may reduce the success rate of recognition.

Publisher

IOP Publishing

Reference7 articles.

1. A real-time bird sound recognition system using a low-cost microcontroller;Kücụ̈ktopcu;Applied Acoustics,2019

2. Acoustic wave-based forest fire extinguisher and detection using machine;Aarthi;International Journal of Engineering Applied Sciences and Technology,2020

3. Machine learning and deep learning;Janiesch;Electron Markets,2021

4. Automated bird acoustic event detection and robust species classification;Zhao;Ecological Informatics,2017

5. ESC: Dataset for Environmental Sound Classification;Piczak,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3