Computations on fall of the leaning tower with considering air resistance

Author:

Xie Cuili

Abstract

Abstract The free fall of a sphere was studied by considering air buoyancy and resistance. After selecting the reasonable drag coefficient formula recommended by the literature, partial differential formulas on the motion of balls falling in the Leaning Tower of Pisa are solved. The variation process of acceleration, velocity and displacement over time during the falling process of two spheres is obtained. The research results indicate that the kinematics of free fall considering air resistance is different from that neglecting air resistance. Air Resistance must be considered in the free fall of the solid ball after 0.3005 seconds. In the free fall of the leaning tower, air resistance makes the solid ball land at 0.4418 seconds which is earlier than the hollow. The variation of the acceleration of a solid ball with time can be described by a second-order function a=-0.115t2 -0.022t+9.801. Velocity does not satisfy the product of acceleration and time but can be described as a polynomial function of the velocity variation with time v = c1t2 + c2t + c3 . About the relationship between displacement and time, for a solid sphere, displacement is proportional to 1.9526 power of time h=5.4945t1.9526 , while for a hollow sphere, it cannot be expressed by a function. The relationship between air resistance and velocity during the falling process of an iron ball satisfies a polynomial function Fd =c1v2 -c2v+c3 rather than a simple relationship where air resistance is directly proportional to the first or second power of speed, which was used in many papers as a reasonable assumption.

Publisher

IOP Publishing

Reference22 articles.

1. On the Variable Acceleration Motion of Falling Sphere in a Fluid Medium;Xie;American Journal of Physics and Applications,2023

2. Parameter formula and practical formula of optimum putting angle of a shot in considering air resistance [J];Cai;College Physics,2006

3. The best projecting angle of non-ideal projectile [J];Liao;University Physics,2007

4. On the speed of falling body in the air[J];Sun;College Physics,2005

5. Terminal velocity of the falling raindrops [J];Liu;College Physics,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3