Author:
Murugan Suriya,Sumithra M G,Murugappan M
Abstract
Abstract
Clustering has proven to be an effective method in the medical field for finding patterns in labelled and unlabelled datasets. This work is implemented over whole body CT scans (∼1TB) of 3500 patients in form of unlabelled DICOM images. The whole-body CT images have been anonymized for 30 attributes based on DICOM regulations and the Brain images alone are segmented using the DICOM tag element called ‘Protocol stack’. The segmented Brain images are efficiently grouped based on visual similarity using K-means clustering after performing feature extraction and dimensionality reduction. The results of the clustering can be furtherutilized by radiologists to perform labelling or find patterns in Brain CT scans of patients that are difficult where each scan consists of a varying number of slices during detection of Internal Bleeding. The efficiency of K-means is analyzed by performing computation over a different number of clusters (K) by applying silhouette scores to find optimal cluster.
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献