Innovative meshless approach for shaped charges applications

Author:

Collé Anthony,Limido Jérôme,Unfer Thomas,Vila Jean-Paul

Abstract

Abstract We focus here on modelling shaped charges. Combining large deformations, numerous interfaceproductions, and strong damage mechanisms, those events are particularly challenging from a numerical point of view. Eulerian finite element methods are classically used for such modeling.However, they induce very long computation times, accuracy losses (projection algorithms), anddifficulties with opening criteria related to jet fragmentation. Among the Lagrangian approaches, the meshless method called Smoothed Particle Hydrodynamics (SPH) appears as a relevant alternative to prevent such shortcomings. Based on a set of moving interpolation points, it disregards any connectivity between its elements which makes it naturally well suited to handle material failure. Nevertheless, SPH schemes suffer from well-known instabilities questioning their accuracy and activating nonphysical processes,such as numerical fragmentation. Many stabilizing tools are available in the literature however, they either raise conservation and consistency issues or drastically increase the computation times. We propose then to use an alternative scheme called γ-SPH-ALE. Based on the ALE framework, it achieves robust and consistent stabilization through an arbitrary description of motion. Thanks to CFL-like conditions obtained through a nonlinear stability analysis, the scheme stability is ensured. By preventing spurious oscillations in elastic waves and correcting the so-called tensile instability, both stability and accuracy are increased regarding classical approaches. Also, taking advantage of GPU computing, such results are achieved in reduced computation times contrary to classical CPUimplementations. Its implementation on a “Viper” shaped charge shows that the scheme handles the jet generation process as well as its resulting interaction with a target.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference18 articles.

1. «Calculation of a shaped charge jet using MESA-2D and MESA-3D hydrodynamic computer codes»;Bolstad,1992

2. «Break-up of copper shaped-charge jets: Experiment, numerical simulations, and analytical modeling»;Petit,2005

3. “Photon Doppler velocimetry (PDV) characterization of shaped charge jet formation”;Zellner,2013

4. «Characterizing in-flight temperature of shaped charge penetrators in CTH»;Sable,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3