How generalizable is a machine-learning approach for modeling hub-height turbulence intensity?

Author:

Bodini Nicola,Lundquist Julie K.,Livingston Hannah,Moriarty Pat

Abstract

Abstract Hub-height turbulence intensity is essential for a variety of wind energy applications. However, simulating it is a challenging task. Simple analytical models have been proposed in the literature, but they all come with significant limitations. Even state-of-the-art numerical weather prediction models, such as the Weather Research and Forecasting model, currently struggle to predict hub-height turbulence intensity. Here, we propose a machine-learning-based approach to predict hub-height turbulence intensity from other hub-height and ground-level atmospheric measurements, using observations from the Perdigão field campaign and the Southern Great Plains atmospheric observatory. We consider a random forest regression model, which we validate first at the site used for training and then under a more robust round-robin approach, and compare its performance to a multivariate linear regression. The random forest successfully outperforms the linear regression in modeling hub-height turbulence intensity, with a normalized root-mean-square error as low as 0.014 when using 30-minute average data. In order to achieve such low root-mean-square error values, the knowledge of hub-height turbulence kinetic energy (which can instead be modeled in the Weather Research and Forecasting model) is needed. Interestingly, we find that the performance of the random forest generalizes well when considering a round-robin validation (i.e., when the algorithm is trained at one site such as Perdigão or Southern Great Plains) and then applied to model hub-height turbulence intensity at the other location.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3