Effects of freestream turbulence on the wake growth rate of a model wind turbine and a porous disc

Author:

Öztürk Buğrahan,Hassanein Abdelrahman,Tuğrul Akpolat M,Abdulrahim Anas,Perçin Mustafa,Uzol Oğuz

Abstract

Abstract This study presents the results of an experimental investigation that focuses on quantifying the differences between the spreading rates of a model wind turbine wake and a porous disc wake at different freestream turbulence intensity levels. Two-dimensional two-component particle image velocimetry (2D2C PIV) measurements are performed within the wakes of a model wind turbine and a porous disc (up to 7D downstream) of the same diameter and a matching thrust coefficient. The wind turbine is operated at a Tip Speed Ratio (TSR) of 2 in order to have matching thrust coefficient conditions for a consistent wake comparison. The results show that the mean wake flow field (both near and far wake) is significantly different for the wind turbine compared to the porous disc even if they are operating at similar, high or low, freestream turbulence levels. The wake of the wind turbine recovers much faster than that of a porous disc with a matching thrust coefficient especially in the far wake region at both low and high freestream turbulence levels. On the other hand, the data shows that the far wake of the turbine operating at low freestream turbulence is very similar to that of the disc operating at high freestream turbulence. This suggests caution and stresses the importance in choosing the freestream turbulence intensity level when using porous discs to represent wind turbines in wind tunnel studies.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3