Analysis of wake properties and meandering under different cases of atmospheric stability: a large eddy simulation study

Author:

Jézéquel Erwan,Blondel Frédéric,Masson Valéry

Abstract

Abstract Large eddy simulations (LES) with the solver Meso-NH are performed to analyse a single wind turbine wake. In the first part of this work, four algorithms to determine the instantaneous wake centre (wake tracking) from the literature are compared. A data-processing method is also proposed to improve the results of these algorithms. In the second part, three different atmospheric conditions are simulated to assess the effect of inflow conditions on the wake. The focus is on the 2-dimensional wake width, the maximum deficit, the maximum added turbulence and the amount of wake meandering in the lateral and vertical directions. The three formers are computed in both the Moving and Fixed Frames of Reference (MFOR and FFOR). Results in the MFOR are shown to be sensitive to the wake tracking algorithm, in particular for turbulence. The flowfield in the MFOR is found to be independent of atmospheric conditions for the two cases with similar operating conditions and length scales larger than two diameters of the rotor. The third case with lower length scales and turbulence intensity behaves differently.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3