An aeroacoustics-based approach for wind turbine blade damage detection

Author:

Zhang Yanan,Avallone Francesco,Watson Simon

Abstract

Abstract In this work, aimed at the development of an aeroacoustics-based wind turbine blade damage detection approach, the noise scattered from two airfoils with damage at the trailing edge or at the leading edge is investigated. Four trailing edge cracks (with width of 0.2, 0.5, 1.0 and 2.0 mm) and four leading edge erosion configurations (consisting of gouges and delamination) are investigated for a NACA 0018 and a DU96 W180 airfoil. Experiments are carried out under clean and turbulent inflow conditions. Acoustic measurements are performed in an anechoic wind tunnel with a microphone array. The trailing edge crack causes a tonal peak at trailing-edge-thickness-based Strouhal number approximately equal to Sth ∼ 0.1 under clean and low turbulence intensity inflow conditions (e.g. ∼4% in this study). For a higher turbulence intensity (e.g., ∼7%), the tonal peaks are not detectable. For the leading edge erosion case, under clean inflow conditions and minor damage levels, the amplitudes of the harmonics in the trailing edge noise spectra increase compared with the baseline. For moderate damage levels, the harmonics on the suction side shift to higher frequencies with lower amplitudes. For the highest damage levels, only broadband characteristics are present, where low-frequency contributions increase and high-frequency contributions decrease as the damage level increases. When introducing turbulent inflow, the leading edge impingement noise level decreases at medium-high frequency (above 1000 Hz) with increasing levels of erosion.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference22 articles.

1. Survey of failures in wind power systems with focus on Swedish wind power plants during 1997-2005;Ribrant,2007

2. Ultrasound-based identification of damage in wind turbine blades using novelty detection;Oliveira;Ultrasonics,2020

3. Vibration characteristic responses due to transient mass loading on wind turbine blades;Al-Hadad;Eng. Fail. Anal.,2019

4. A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade;Schroeder;Meas. Sci. Technol.,2006

5. Acoustic emissions from wind turbine blades;Bhargava;J. Aerosp. Technol. Manag.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3