Modelling the Shear Flow Behaviour of Cement Paste Using Machine Learning –XGBoost

Author:

Sathyan Dhanya,Govind D,Rajesh C B,Gopikrishnan K,Aswath Kannan G,Mahadevan Jayanth

Abstract

Abstract In recent years machine learning is considered as a highly effective and widely used tool to predict the behaviour of complex and heterogeneous problems. In this paper, the behaviour of superplasticised cement paste is assessed by XGBoost, which is accepted to accomplish the state-of-the-art results on many machine learning challenges. The data required for the development of model is formulated experimentally by conducting rheological tests on cement pastes using a temperature controlled Coaxial Cylinder Viscometer. Various parameters like amount of cement, superplasticiser, water and test temperature are taken as input parameters and the behaviour is assessed by taking rheological characterises like yield stress and plastic viscosity as output parameters. Out of the 252 data formulated experimentally 85 % are used for training and the remaining is for testing the efficacy of the network. From the results it is observed that the model developed using XGBoost is a promising tool for the solution of highly complex and heterogeneous civil engineering problems, which otherwise is highly tedious and time consuming in nature.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3