Research on ocean current visualization method based on particle

Author:

Dong Yong,Huang Binghu,Wang Fuyuan,He Yawen

Abstract

Abstract NetCDF network general data format is a common data format used to store meteorological data such as ocean current field. However, the ocean current data in NetCDF format can not be read directly on the web for dynamic visualization. To solve this problem, this paper takes the Pearl River Estuary area as the research area, adopts the sparse algorithm based on local Moran’s I index and improved point center buffer to dilute the ocean current data, converts the ocean current point data into particle data by using the vector synthesis calculation method of ocean current data, and designs specific JSON data structure for data storage. After completing the pre-processing of the visualization data of ocean current based on particles, a dynamic visualization display platform of ocean current particles is built on the Web side, and the JSON data of ocean current is read. The space-time dynamic visualization effect of ocean current data in the form of particles in the format of NetCDF is realized, and the static and intuition problem of ocean current visualization is solved.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference7 articles.

1. Design and implementation of multimodal dynamic visualization system for ocean and atmospheric data[J];Jiusong;Marine Sciences,2014

2. Particle Systems—a Technique for Modeling a Class of Fuzzy Objects[J];Reeves,1983

3. Data Structure Design of Particle System for Global Surface Flow Visualization [J];Shuai;Marine Information,2019

4. A Particle System for Interactive Visualization of 3D Flows[J];Kruger;IEEE Transactions on Visualization and Computer Graphics,2005

5. Interpolation-Based Pathline Tracing in Particle-Based Flow Visualization.[J];Jennifer;IEEE transactions on visualization and computer graphics,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3