Field testing of low-cost particulate matter sensors for Digital Twin applications in nanomanufacturing processes

Author:

Lopez de Ipiña Jesus M.,Lopez Alberto,Gazulla Alejandro,Aznar Gabriel,Belosi Franco,Koivisto Joonas,Seddon Richard,Durałek Paweł,Vavouliotis Antonios,Koutsoukis Grigorios,Lopez de Ipiña Karmele,Florez Sonia,Costa Anna

Abstract

Abstract The EU-project ASINA is testing Low-Cost Particulate Matter Sensors (LCPMS) for industrial monitoring of the concentration of airborne particles, with the purpose of integrating this sensor technology within the data collection layer of Digital Twins (DTs) for manufacturing. This paper shows the results of field performance evaluations carried out with five LCPMS from different manufacturers (Alphasense OPC-N3, Plantower 9003, Sensirion SPS30, Sensirion SEN55 and Tera Sensor NetxPM), during several field sampling campaigns, conducted in four pre-commercial and commercial pilot lines (PLs) that manufacture nano-enabled products, belonging to the ASINA and OASIS H2020 EU-projects [2,28]. Field tests consisted of deploying LCPMS in manufacturing process, measuring in parallel with collocated reference and informative instruments (OPS TSI 3330/CPC TSI 3007), to enable intercomparison. The results show the complexity and differential response of the LCPMS depending on the characteristics of the monitored scenario (PL). Overall, they exhibit uneven precision and linearity and significant bias, so their use in industrial digital systems without proper calibration can lead to uncertain and biased measurements. In this sense, simple linear models are not able to capture the complexity of the problem (non-linear systems) and advanced calibration schemes (e.g. based on machine learning), applied “scenario by scenario” and in operating conditions as close as possible to the final application, are suggested to achieve reliable measurements with the LCPMS.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3