Machine-learning Assisted Insights into Cytotoxicity of Zinc Oxide Nanoparticles

Author:

Bilgi E,Oksel Karakus C

Abstract

Abstract Zinc oxide nanoparticles (ZnO NPs) are commercially used as an active ingredient or a color additive in foods, pharmaceuticals, sun protection lotions, and cosmetic products. While the use of ZnO NPs in everyday products has not been linked to any serious health issues so far, the scientific evidence generated for their safety is not conclusive and, in most cases, could not be validated further in in vivo settings. To settle controversies arising from inconsistent in vitro findings in previous research focusing on the toxicity ZnO NPs, we combined the results of 25+ independent studies. One way analysis of variance (ANOVA) and classification and regression tree (CART) algorithm were used to pinpoint intrinsic and extrinsic factors influencing cytotoxic potential of ZnO in nanoscale. Particle size was found to have the most significant impact on the cytotoxic potential of ZnO NPs, with 10 nm identified as a critical diameter below which cytotoxic effects were elevated. As expected, strong cell type-, exposure duration- and dose-dependency were observed in cytotoxic response of ZnO NPs, highlighting the importance of assay optimization for each cytotoxicity screening. Our findings also suggested that ≥12 hours exposure to NPs resulted in cytotoxic responses irrespective of the concentration. Considering the cumulative nature of research processes where advances are made through subsequent investigations over time, such meta-analytical approaches are critical to maximizing the use of accumulated data in nano-safety research.

Publisher

IOP Publishing

Reference28 articles.

1. Nanotechnology: History and future. Human & experimental toxicology;Hulla,2015

2. Review of nanotechnology applications in science and engineering;Mobasser;J Civil Eng Urban,2016

3. The role of nanotechnology in the development of battery materials for electric vehicles;Lu;Nature nanotechnology,2016

4. Advanced drug delivery systems: Nanotechnology of health design A review;Safari;Journal of Saudi Chemical Society,2014

5. Nanomaterials history, classification, unique properties, production and market;Sudha;Emerging applications of nanoparticles and architecture nanostructures: Elsevier,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3