Thermal field simulation and material parameter optimization for spaceborne annular truss antennas

Author:

Fu Xiaoyi,Hua Yuntao,Ma Wenlai,Cui Hutao,Zhao Yang

Abstract

Abstract The operational efficacy of large spaceborne annular truss antennas in orbit is significantly influenced by solar irradiation and alternating Earth shadow. This antenna system periodically encounters diverse extreme environments that impact the precision of the antenna surface performance. Consequently, this study presents an optimized thermal control design and conducts temperature field simulation calculations for such antennas. Initial efforts are directed toward analyzing the variables influencing the antenna structure’s temperature, with specific attention paid to the distinctive compositional characteristics of high-precision antennas. As a subsequent step, orthogonal tests are implemented, facilitating the development of an antenna thermal analysis model. This model assists in the identification of principal variables influencing the antenna’s temperature field. Finally, the antenna’s optimal thermal design is drawn upon the biogeography-based optimization (BBO) algorithm, enabling the derivation of ideal material parameters for the thermal design of the antenna. This methodology offers theoretical guidance for future thermal control design of large spaceborne annular truss antennas.

Publisher

IOP Publishing

Reference11 articles.

1. Accuracy potentials for large space antenna reflectors with passive structure;Hedgepeth;J. Spacecr. Rockets,1982

2. Solar-array-induced disturbance of the Hubble space telescope pointing system;Foster;J. Spacecr. Rockets,1995

3. Thermally induced bending vibration of composite spacecraft booms subjected to solar heating;Song;J. Therm. Stresses,2003

4. The thermal dynamic coupling analysis of large flexible space structures by finite element method considering geometric nonlinearity;Fan;J. Astronaut.,2009

5. Thermal distortion optimization design and simulation of a large high precision satellite antenna;Wang;J. Mech. Eng.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3