Trajectory prediction-based guidance law

Author:

Li Mengxuan,Guo Jianguo,Jiang Ruimin

Abstract

Abstract This paper proposes a guidance law based on trajectory prediction, aiming to address the difficulty of traditional guidance laws in meeting high-speed and highly maneuverable vehicles. The unscented Kalman filtering (UKF) technique is employed to estimate the target’s motion and predict the virtual impact point using the Singer model and measuring model. The midcourse guidance law is applied to the virtual target, taking into account the constraint of the intersection angle, while the terminal guidance utilizes modified proportional guidance. To mitigate the overload chattering in the transition sections of both midcourse and terminal guidance, the distance is used to modify the transition section of the terminal guidance. Simulation results demonstrate that the proposed guidance law effectively reduces both the encounter angle and the required maneuvering. Furthermore, to minimize midcourse guidance errors, the prediction results of the virtual target are continually updated during the trace process. This method can also be applied to trail other highly maneuverable targets.

Publisher

IOP Publishing

Reference11 articles.

1. The Problems of Tracking Filter and Prediction for Non-ballistic Target HTV-2 in the Near Space;Qin;J. Aerospace Control,2015

2. Trajectory prediction of hypersonic vehicle based on adaptive IMM;Zhai;J. Acta Aeronautica et Astronautica Sinica,2016

3. Development of Near Space Hypersonic Vehicles and Defence Strategies Analysis;Wang;J. Modern Defence Technology,2021

4. Lead angle constrained optimal midcourse guidance;Dwivedi,2013

5. Design of midcourse guidance laws via a combination of fuzzy and SMC approaches;Chen;J. International Journal of Control, Automation and Systems,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3