Longitudinal-transverse thermal- force bending and stability layered inhomogeneous profiled rod

Author:

Mishchenko A

Abstract

Abstract The solution to the problem of the stress-strain state of an inhomogeneous profiled rod is based on the use of nonlinear equilibrium conditions and physical relations of a layered thermo elastic thin rod. A differential equation of bifurcation inhomogeneous rod stability of variable cross-section is obtained. The equation has variable functional coefficients. In the initial state, the rod is subjected to bending with the implementation of one of the asymmetric shapes. The critical state occurs under the action of a longitudinal load corresponding to one of the lowest symmetrical shapes, orthogonal to the initial shape. In the first series, numerical calculations of an inhomogeneous I-rod with a variable cross section height are performed. Shelves and wall I-rod are made of steel, aluminum and titanium alloys. The graphs of maximum deflection and normal stresses acting at the calculate points at the boundaries of the layers are plotted depending on the longitudinal load at the given levels of transverse loads and thermal field. A significant influence of the rod physical structure, the profiling its form and the factor of nonlinearity of static relations on the stress fields has been established. A homogeneous temperature field with a nominal value of 80°C creates fields of self-balanced stresses in an inhomogeneous rod. The components of normal stresses in this case reach 20-40% of the materials permissible resistance level. The presence of rod parts with a significant difference in the coefficients of thermal expansion in the composition enhances this effect. In the second, the stability analysis of an inhomogeneous I-rod with a variable width cross section was performed. The transition of the initial S-shaped bend to an unstable state is shown.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference14 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3