Mathematical modeling of the influence of non-catalytic dissociation / recombination of water molecules in the desalination channel on electric convection

Author:

Kovalenko A,Gudza V,Urtenov M,Chubyr N

Abstract

Abstract The article formulates a two-dimensional mathematical model of non-stationary transport of 1: 1 electrolyte in a potentiodynamic mode, taking into account electroconvection and non-catalytic dissociation / recombination reaction of water molecules in electromembrane systems, which are considered as the desalting channel of an electrodialysis device. The model is described by a system of coupled Navier-Stokes and Nernst-Planck-Poisson equations taking into account the electric force and physically justified boundary conditions. The article establishes the basic laws of mass transport, taking into account the dissociation / recombination of water molecules. It was shown for the first time that a double electric layer of hydrogen and hydroxyl ions arises in the recombination region. It is shown that between the region of recombination and quasi-equilibrium regions of space charge there are regions of electroneutrality and equilibrium with an almost linear distribution of concentrations. It was found that even under prelimiting, but close enough to the limiting current, modes, non-catalytic dissociation of water molecules in the quasi-equilibrium region of space charge occurs so intensely that the concentration of hydrogen and hydroxyl ions becomes comparable to the concentration of potassium and chlorine ions. At overlimiting current densities, due to the appearance of an extended space charge region and intense dissociation of water molecules in this region, as well as an increase in the electric double layer in the recombination region, the space charge and the dissociation / recombination reaction of water molecules significantly affect each other. In turn, this has a decisive effect on electroconvection and, accordingly, on the transport of salt ions.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3