The Energy probability distribution of quantum levels of a particle imprisoned in a three dimensional box

Author:

Yarman T,Akkus B,Arik M,Marchal C,Cokcoskun S,Kholmetskii A,Yarman O,Zaim N,Altintas A A,Özaydin F

Abstract

Abstract This work was trigerred by the earlier achivements of Yarman et al, aiming to bridge themordynamics and quantum mechanics, whence, Planck constant came to replace Boltzmann constant, and “average quantum level number” came to replace “temperature”. This evoked that the classical Maxwell energy probability distribution p(E) with respect to energy E of gas molecules might be taken care of, by the “energy probability distribution of the quantum levels” of a particle imprisoned in a given volume, assuming that in the case we have many particles, following Pauli exclusion principle, no pair of particles can sit at the same level. Thereby, the energy probability distribution of the quantum levels of a particle imprisoned in three dimensions, will be the subject of this essay. Such an outlook becomes interesting from several angles: i) It looks indeed very much like a classical Maxwellian distribution. ii) In the case we have as many free particles in the box as the number of levels depicted by the number of quantum levels in between the predetermined lower bound energy level and the upperbound energy level, all the while assuming that the Pauli principle holds, the distribution we disclose becomes the energy probability distribution of the ensemble of particles imprisoned in the given box. iii) It can even be guessed that, if elastic collisions between the free particles were allowed, and still assuming quantization and the Pauli principle, the outcome we disclose should be about the same as that of the energy probability distribution, molecules in a room would display in equilibrium. iv) The quantized energy being proportional to the sum of three squared integers associated with respectively, each of the spatial dimensions; the property we reveal certainly becomes remarkable from the point of view of mathematics of integer numbers. All the more, we further disclose that, to the probability distribution outlook remains the same, be this qualitatively for higher dimensions than 3.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3