Einstein’s dream to unify all forces finally materializes: a revived de Broglie’s pilot-wave theory with novel solutions

Author:

Munera H A

Abstract

Abstract Starting from Louis de Broglie’s pilot wave-theory, this paper unifies gravity and quantum mechanics under a single mathematical field theory for all forces in Nature. Two families of potentials coexist as mathematical solutions for the homogeneous Klein-Gordon equation which is the same homogeneous classical wave equation: (a) Neo-Laplacian local time-independent background potentials, and (b) Novel time-distance entangled Q(q) potentials which are isomorph to distance-time-velocity transformations based on any of the competing relativistic theories (Lorentz, Poincaré or Einstein), or on the pre-relativistic Galilean invariant Doppler equations. This remarkable property makes present theory compatible with all previous empirical evidence, including experiments conventionally interpreted as supporting Einstein’s special relativity. We report explicit closed solutions for potentials solving the one-dimensional and three-dimensional classical wave equations, and describe in detail how to calculate time-independent neo-Laplacian background forces and relativistically isomorph time-dependent entangled forces. The scale of the problem appears as a required parameter, thus making our theory applicable to all scales of Nature from quarks to cosmos. A usually overlooked neo-Laplacian logarithmic potential predicts the observed high values of non-Keplerian tangential speeds at the galactic scale. At the human scale, calculations relative to hurricanes and tornadoes may be facilitated by the closed form of our unified forces. A novel torsion component of gravity automatically appears from our new solutions.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference153 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3