Abnormal Detection of Vibrating Sinking Pipe Gravel Pile Machines Based On Support Vector Machine Model

Author:

Wu Feng,Zhang Zhiying

Abstract

Abstract The intelligent monitoring system automatically collects the current value, drilling depth and drilling verticality and other parameter data of the equipment during the operation of the vibrating sinking pipe gravel pile machines. When the pile driver works normally, the parameter data meet certain distribution characteristics. In the work of the vibrating sinking pipe gravel pile machines, Parameter data are used for data mining, and one class support vector machine is used to learn the boundary of data. Once the equipment works abnormally, it can be detected in time to reduce the loss. Experiments show that the method has a high detection rate and is easy to be extended to other engineering equipment.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. The improved method of least squares support vector machine modeling and its application [C];Wei,2011

2. Optimization of support vector machine power load forecasting model based on data mining and Lyapunov exponents [J];Niu;Journal of Central South University of Technology,2010

3. Research on the application of support vector machines in classification Problems [J];Zhang;Heilongjiang Sci-Tech Information,2010

4. Network time concealed Channel Detection method based on ONE-class SVM [J];Yi;Computers and Modernization,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3