Accurate Nodal Diffusion Modelling on the High Temperature Test Reactor (HTTR)

Author:

Rizki M.,Oktavian ,Seker Volkan,Kochunas Brendan,Xu Yunlin

Abstract

Abstract The High Temperature Test Reactor is a 30-MWth helium-cooled, graphite-moderated, prismatic-type gas reactor developed by the Japan Atomic Energy Agency (JAEA). The hexagonal shape of fuel blocks in the HTTR core combined with complex inner structures containing TRISO particles results in the double-heterogeneity effect that increases the simulation challenge of the reactor. This research has a goal to accurately model the HTTR fuel blocks employing the standard two-step procedure of a reactor analysis: employ a lattice physics calculation to generate homogeneous cross sections and use them in a nodal diffusion calculation. The implementation of the diffusion approximation results in a faster calculation with acceptable accuracy compared to the high-resolution lattice calculation. An advanced method called Triangular Polynomial Expansion Nodal (TriPEN) method was used in this work for the nodal diffusion calculation to accurately model the flux discontinuity effect between blocks by generating discontinuity factors in each surface and corner point. To do this, the heterogeneous solutions obtained from the lattice physics calculation, which is done by Serpent Monte Carlo in this case, are utilized by TriPEN to generate the discontinuity factors. Due to its capability to simulate any reactor geometry with a high-resolution, the results generated from Serpent calculation were also used as the reference cases for this work. In this work, the TriPEN method is implemented in the PARCS core neutronic module inside AGREE, a U.S. N.R.C. Multiphysics code system for the High Temperature Reactor (HTR). Test cases conducted for this method involved the original design of the HTTR. The 4-hex model built consisted of the central control-rod block of HTTR together with 6 of the half-fuel-blocks surround it. The differences in material composition in each assembly block in HTTR resulted in flux discontinuity effects on the assembly block interfaces. To correct this discrepancy, discontinuity factors were applied in order to make the homogenous solutions from the nodal calculation agree with the heterogeneous solutions from the lattice physics calculation. Applying this procedure to the HTTR nodal models, TriPEN is able to produce exact results in the eigenvalue compared to Serpent calculation, the rod worth calculated perfectly matched the reference, and the flux and power distribution only has negligible discrepancies.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference13 articles.

1. Generation IV International Forum, A Technology Roadmap for Generation IV Nuclear Energy Systems,2002

2. Deterministic Modeling of the High Temperature Test Reactor With;Ortensi,2010

3. High Temperature Test Reactor

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3