A study on aluminum metal matrix preforms forging into double-hub flange

Author:

Agrawal M,Singh S

Abstract

Abstract The present article presents investigation of deformation characteristics during forging (closed-die) of SiCp AMC. The preform (cylindrical) fabricated via liquid metal stir casting manufacturing route were located centrally in closed-die set with respect to its axis and forged into axi-symmetric double-hub flange component. Initial experiments were conducted to examine the mechanical characterization of the AMC preforms under consideration, which also included investigations into interfacial frictional conditions and stress-strain behaviour of the AMC material. Under a controlled die-travel till the die corners were filled completely, during forging of the preforms, corresponding height reductions and die loads were recorded. The complete deformations were considered in two stages, i.e. free barreling and constrained distortion stages. The theoretical expressions (generalized using ‘Upper Bound’ technique) for strain rates, velocity field, various energy dissipations along with average die loads for all the deformation modes considered in the present study were formulated. The variation in die loads, die cavity fills and energy dissipations due to the effect of preform aspect ratio and die velocity were critically examined and experimentally compared the results.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. Effects of silicon carbide particle sizes on friction-wear properties of friction composites designed for car brake lining applications;Matejka;Tribology Int.,2010

2. Development of Aluminum based composite material;Mithun;Int. J. of Appl. Engg. Res.,2011

3. Aluminum matrix composites: challenges and opportunities;Surappa;Sadhana,2003

4. An experimental study on the effect of silicon carbide particulates (SiCp) on the mechanical properties like machinability and forgeability of stir-cast aluminum alloy metal matrix composites;Sutradhar;Indian Foundry J.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3