Study on the Calculation Method for Pumping Process in as Vacuum System

Author:

Huang Si,Guo Jiawei,Yi Tiankun,Li Songfeng,Wu Taizhong

Abstract

Abstract The calculation methods for vacuum system pumping were usually based on some simple theoretical models, the corresponding results had significant deviations from actual situations. In this study, medium and low vacuum systems (including vacuum chambers, pipes and pumps) were taken as research objects. With a measured vacuum system, and relationship between pump’s suction flowrate and inlet pressure, a new calculation method for vacuum pumping time was proposed, in which laminar or turbulent model was selected according to the pipeline’s flow state. New and traditional laminar method were used to calculate the pumping process of the measured system, which found that in the middle and high pressure stage, the pipeline flow was in turbulent state and the resistance was non-negligible. If the influence of turbulence was ignored, the calculated pressure drop would be faster than actual situation. The calculation result was verified by actual measurement result, indicating that new method is practical for vacuum pumping time calculation.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

1. Energy, Exergy analysis and optimization of solar thermal power plant with adding heat and water recovery system;Akbari;Energy Conversion and Management,2018

2. Improved approach for the determination of low-Z elements in uranium samples using a vacuum chamber TXRF spectrometer;Sanyal;X-Ray Spectrometry,2017

3. Energy Saving in Paper Machine Vacuum System;Kikawada;Japan Tappi Journal,2014

4. Development of process and equipment of RH vacuum refinery technology;Liu;Kang T’ieh/Iron and Steel (Peking),2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3