Density Functional Theory Study of Hydrogen Adsorption on Pt Pd/γ-Al2O3 Surface

Author:

Zhang Liang,Li Jia,Chen Yong,Zeng Cheng,Kang Wu,Yang Panxing,Xiong Ru,Liu Jinhong

Abstract

Abstract At present passive hydrogen recombiners (PAR) are used to prevent hydrogen explosion. Hydrogen removal catalyst is the core component of PAR. The adsorption of hydrogen on the solid catalyst surface is the premise of catalytic hydrogen removal and is of great significance for deeper understanding of hydrogen removal mechanism. The adsorption behavior of H2-Pt Pd/γ-Al2O3 system has been studied by using density functional theory and periodic slab model. The results of different adsorption sites indicate the adsorption energy of top site is highest, which is -1.2584eV. Higher adsorption energy means stronger interaction between H2 and catalyst substrate, which elongates H-H bond and increases the negative charge on H2. With increasing doping content of Pd, the adsorption energy of substrate decreases gradually. The adsorption energy absolute value of Pt4/γ-Al2O3 is highest and its H-H bond is longest, arriving at 0.0967nm. After adsorbed on substrate, the energy gap of H2 decreases drastically with the lowest energy gap of H2-Pt4/γ-Al2O3 that is 0.5197eV, and the peaks of density of state pattern move to lower energy level. This is because that the d orbital of Pt/Pd atoms interacts with the τ* anti-bond orbital of H2 strongly, transferring electrons to the τ* anti-bond orbital of H2. Doping Pd increases the energy gap of molecule orbital.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3