Author:
Blokhin S A,Bobrov M A,Maleev N A,Blokhin A A,Vasyl’ev A P,Kuzmenkov A G,Troshkov S I,Ustinov V M,Rochas S S,Gladyshev A G,Novikov I I,Karachinsky L Ya,Voropaev K O,Ionov A S,Egorov A Yu
Abstract
Abstract
The heterostructure design for 1.55 μm range VCSELs is proposed and realized. The wafer fusion technique was used to form the final heterostructure. The growth of AlGaAs/GaAs distributed Bragg reflectors (DBRs) on GaAs substrate and the optical cavity with an active region on InP substrate as well as a tunnel junction (TJ) regrowth was performed by molecular beam epitaxy (MBE). A key feature of the proposed design is the use of n++-InGaAs/p++-InGaAs/p++-InAlGaAs TJ, which allows, due to the effective removal of oxide from the InGaAs surface, to use MBE for re-growth of the TJ surface relief. Despite of the presence in heterostructure a narrow-gap InGaAs layers, a noticeable increase in internal optical loss in lasers can be avoided due to the short-wavelength shift of the edge of interband light absorption in ++-InGaAs layers (Burshtein-Moss effect). Fabricated VCSELs demonstrate single-mode operation with a threshold current less than 2 mA and a slope efficiency of ~ 0.46 W/A, which are comparable with characteristics of VCSELs with n++/p++-InAlGaAs TJ with a similar level of mirror losses.
Subject
General Physics and Astronomy